
IT
 U

N
IV

ER
SI

TY
 O

F
CO

PE
N

H
A

G
EN

SUBMISSION OF WRITTEN WORK
Class code:

Name of course:

Course manager:

Course e-portfolio:

Thesis or project title:

Supervisor:

Full Name: Birthdate (dd/mm-yyyy): E-mail:

1. @itu.dk

2. @itu.dk

3. @itu.dk

4. @itu.dk

5. @itu.dk

6. @itu.dk

7. @itu.dk

8. @itu.dk

Multilingual Hate Speech Detection

Detecting the Types and Targets of Offensive Language in English and Danish Social Media Data

Gudbjartur Sigurbergsson - gusi@itu.dk

Advisor: Leon Derczynski

Submitted: June 2019

ii

Abstract

The presence of offensive language on social media platforms

and the implications this poses is becoming a major concern in

modern society. Given the enormous amount of content created

every day, automatic methods are required to detect and deal with

this type of content. Until now, most of the research has focused on

solving the problem for the English language, while the problem

is obviously multilingual in nature.

In our work, we develop a Danish dataset for the task of offen-

sive language detection. It contains user generated comments from

various social media platforms, and to our knowledge, it is the first

of its kind. Our dataset is annotated to capture the types and tar-

get of offensive language using the annotation schema presented in

[41]. We, furthermore, publish a Danish hate speech lexicon, also

the first of its kind. Finally, we develop effective automatic meth-

ods for the detection of offensive language using machine learning

and natural language processing techniques. Our methods are de-

signed to work well for both the English and the Danish language,

and capture the types and targets of offensive language, making

them effective in the detection of different types of offensive lan-

guage such as hate speech and cyberbullying events.

Acknowledgements

First and foremost I would like to thank my supervisor, Leon Derczyn-

ski, for being the best mentor a master’s student could ask for. He has

been a great source of inspiration and has constantly brought new and

interesting ideas to the table. Without his help this thesis would not

have been possible.

Special thanks to my dear friends Styrmir Svavarsson, Herdís Arngríms-

dóttir and Oddur Kristjánsson, and my sister Birna Særós Sigurbergs-

dóttir, for the exceptional feedback, source of motivation and countless

invaluable conversations.

Last but not least, I would like to thank my parents for always believing

in me and the constant support throughout the years.

Signature

Guðbjartur Sigurbergsson June 2019

Contents

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Definition . 2

1.3 Contribution . 3

2 Related Work 4

2.1 Challenges . 4

2.2 Different Types of Tasks . 5

2.3 Features . 9

2.4 Models . 12

2.5 OffensEval . 13

3 Task Framing 17

3.1 Classification Structure . 17

3.2 The OLID Dataset . 20

4 Danish Dataset 21

4.1 Collection . 21

4.2 Danish Hate Speech Lexicon . 23

4.3 Privacy Concerns . 24

4.4 Annotation Procedure . 24

4.5 Final Dataset . 26

5 Methods 28

5.1 Features . 28

5.2 Models . 37

6 Experimental Setup 47

6.1 Datasets . 47

6.2 Model Training and Testing . 50

6.3 Evaluation . 50

7 Results and Analysis 53

7.1 Experiments . 53

7.2 Analysis of Deep Learning Classifiers 60

7.3 Error Analysis . 63

8 Conclusion 66

8.1 Contribution . 66

8.2 Future Work . 68

A Danish Hate Speech Lexicon from Reddit Survey 69

Bibliography 73

List of Figures

5.1 A visualization of the word-to-index and padding process. In

this example, the integer 0 is used as a padding index. 31

5.2 The high level architecture of both the Learned- and Fast-

BiLSTM models. The only difference between the two is

that the vectors in the embedding layer are updated dur-

ing training for the Learned-BiLSTM model, while they stay

fixed in the Fast-BiLSTM model. The output layer consists of

one node in the case of sub-task A (NOT/OFF) and B (UN-

T/TIN), and 3 nodes in the case of sub-task C (IND, GRP,

OTH). 44

5.3 A high-level overview of the AUX-Fast-BiLSTM model archi-

tecture. 46

7.1 The train and validation loss curve for the Fast-BiLSTM clas-

sifier for sub-task A and the English language. 61

7.2 The train and validation loss for the best performing models

in sub-task B for each language. 62

7.3 The train and validation loss for the best performing models

in sub-task C for each language. 63

List of Tables viii

List of Tables

2.1 Macro averaged F1-scores for the competing teams in Offen-

sEval for sub-task as they are presented in [42]. The baselines

and models from [41] are also included in bold. 16

3.1 The distribution of labels in the OLID dataset for both the

train and test set [42]. 20

4.1 The distribution of samples by sources in our final dataset.

"w offensive terms" represents that the samples were retrieved

using the Danish hate speech lexicon (section 4.2) as a filter. . 26

4.2 The distribution of labels in the annotated Danish dataset for

both the train and test set. 27

6.1 The distribution of samples by labels in the modified HSAOFL

dataset. 49

7.1 Results from our experiments for sub-task A and English. . . 54

7.2 Results from our experiments for sub-task A and Danish. . . 55

7.3 Recall (R), precision (P), and F1 score by class for our best

performing models in sub-task A. Baselines also included to

get an idea of the class distribution. 56

List of Tables ix

7.4 Results from our experiments for sub-task B and English. . . 57

7.5 Results from our experiments for sub-task B and Danish. . . . 57

7.6 Recall (R), precision (P), and F1 score by class for our best

performing models in sub-task B. Baselines also included to

get an idea of the class distribution. 57

7.7 Results from our experiments for sub-task C and English. . . 59

7.8 Results from our experiments for sub-task C and Danish. . . . 59

7.9 Recall (R), precision (P), and F1 score by class for our best

performing models in sub-task C. Baselines also included to

get an idea of the class distribution. 59

Chapter 1

Introduction

Offensive language in user-generated content on online platforms and

its implications has been getting a lot of attention over the last couple of

years. This interest is sparked by the fact that many of the online social

media platforms have come under scrutiny on how this type of content

should be detected and dealt with. It is, however, far from trivial to

deal with this type of language directly due to the gigantic amount of

user-generated content created every day. For this reason, automatic

methods are required, using natural language processing (NLP) and

machine learning techniques.

Types of offensive language. Offensive language varies a lot, ranging

from simple profanity to much more severe types of language. One of

the more troublesome types of language is hate speech and the presence

of hate speech on social media platforms has been shown to be in cor-

relation with hate crimes in real life settings [25]. It can be quite hard

to distinguish between generally offensive language and hate speech as

few universal definitions exist [10]. There does, however, seem to be

Chapter 1. Introduction 2

a general consensus that hate speech can be defined as language that

targets a group with the intent to be harmful or to cause social chaos.

This targeting is usually done on the basis of some characteristics such

as race, color, ethnicity, gender, sexual orientation, nationality or reli-

gion [36]. In section 2.2, hate speech is defined in more detail. Offensive

language, on the other hand, is a more general category containing any

type of profanity or insult. Hate speech can, therefore, be classified as a

subset of offensive language. In [41], effective guidelines are proposed

on how to classify offensive language as well as the type and the tar-

get of offensive language. These guidelines capture the characteristics

of generally offensive language, hate speech and other types of targeted

offensive language such as cyberbullying.

1.1 Motivation

Given the fact that the research on offensive language detection has to a

large extent been focused on the English language, we set out to explore

the design of models that can successfully be used for both English and

Danish. To accomplish this, an appropriate dataset must be constructed,

annotated with the guidelines described in [41]. We, furthermore, set

out to analyze the linguistic features that prove hard to detect by ana-

lyzing the patterns that prove hard to detect.

1.2 Problem Definition

We approach the task at hand as a supervised classification prob-

lem. Formally, classification problems of this kind can be described

by the following statement: Given a set of user-generated samples,

Chapter 1. Introduction 3

S = {s1, s2, s3, . . . sn}, labeled with labels L = {l1, l2, l3, . . . , lk}, find a

function F, that maps a sample, si, to the appropriate label, lj.

1.3 Contribution

We construct a Danish dataset containing user-generated comments

from Reddit and Facebook, annotated using the schema introduced in

[41]. We develop four automatic classification systems, each designed

to work for both the English and the Danish language. In the detection

of offensive language in English, the best performing system achieves

a macro averaged F1-score of 0.74, and the best performing system for

Danish achieves a macro averaged F1-score of 0.70. In the detection of

whether or not an offensive post is targeted, the best performing system

for English achieves a macro averaged F1-score of 0.62, while the best

performing system for Danish achieves a macro averaged F1-score of

0.73. Finally, in the detection of the target type in a targeted offensive

post, the best performing system for English achieves a macro averaged

F1-score of 0.56, and the best performing system for Danish achieves a

macro averaged F1-score of 0.63.

Chapter 2

Related Work

In recent years there has been a lot of interest in the natural language

processing community concerning the vast amount of offensive and ag-

gressive language on online social media platforms and the implications

and issues this poses. Substantial effort has been put into the research

and development of automatic systems designed to classify different

types of offensive and harmful language. In this chapter, we discuss

some of the challenges that arise when developing automatic systems

for harmful language detection in online communications and explore

a few of the different types of tasks that have been considered in the

literature. Finally, a short overview of some of the more prominent set

of features and models that have been used in previous work are pre-

sented.

2.1 Challenges

Automatic detection and classification of offensive language in user-

generated content is far from trivial due to many factors such as the

Chapter 2. Related Work 5

high variety and noisiness of the data. In [27] some of the common

challenges that arise when developing automatic classification systems

for these types of tasks are discussed. First of all, [27] note the com-

mon practice in online communities to obfuscate offensive words and

phrases to prevent manual and/or automatic intervention. This makes

it impossible for simple keyword spotting algorithms to be effective

since obfuscations such as ni99er, whoopiuglyniggerratgolberg and JOOZ

are common on these social media platforms, making the effectiveness

of simply looking for certain keywords very limited. Secondly, even if a

simplistic blacklist approach would be effective, it is impossible to keep

track of all racial, sexist and generally offensive terms as these tend to

evolve quickly over time and this happens exponentially fast in online

communities. Any blacklist approach would, therefore, require constant

manual efforts to keep up-to-date with trends in the language for each

community as they develop over time. It is, furthermore, pointed out

that language that might be considered harmful and offensive in some

communities may be considered fully acceptable in other communities,

which further increases the need for manual efforts [27]. Thirdly, the

offensiveness of a conversation often crosses sentence boundaries so the

full context is required in order to correctly classify the offensiveness.

A thorough understanding of the context is also required to be able to

accurately identify phenomenons such as sarcasm, which is listed in [27]

as one of the major challenges when it comes to these kinds of tasks.

2.2 Different Types of Tasks

Many different types of sub-tasks have been considered in the literature

on offensive and harmful language detection, ranging from the detection

Chapter 2. Related Work 6

of general offensive language to more refined tasks such as hate speech

detection [10], and cyberbullying detection [38].

A key aspect in the research of automatic classification methods for

language of any kind is having substantial amount of high quality data,

that reflects the goal of the task at hand and contains a decent amount of

samples belonging to each of the classes being considered. Since most

researchers approach this problem as a supervised classification task

the data needs to be annotated according to a well defined annotation

schema that clearly reflects the problem statement. The quality of the

data is of vital importance, since low quality data is unlikely to provide

meaningful results. In recent years, a number of tasks have been con-

sidered and a great amount of data has been gathered, processed, and

published in the process. In the following paragraphs a few different

types of these tasks are listed, as well as the datasets used in these

efforts.

Cyberbullying. Cyberbullying, is a form of online harassment. It is

commonly defined as targeted insults or threats against an individual

[41]. In [38], three factors are mentioned as indicators of cyberbullying:

the intention to cause harm, repetitiveness, and an imbalance of power.

This type of online harassment most commonly occurs between children

and teenagers, and cyberbullying acts are prohibited by law in several

countries, as well as many of the US states [14].

In [37] the focus is on classifying cyberbullying events in Dutch.

They define cyberbullying as textual content that is published online

by an individual and is aggressive or hurtful against a victim. The

dataset is created by collecting data from Ask.fm (a social network-

ing site where users can post questions and answers) and the final

Chapter 2. Related Work 7

dataset consists of 85,485 Dutch posts, annotated by two annotators.

The annotation-schema used consists of two steps. In the first step,

a three-point harmfulness score is assigned to each post as well as a

category denoting the authors role (i.e. harasser, victim, or bystander).

In the second step a more refined categorization is applied, by anno-

tating the posts using the the following labels: Threat/Blackmail, Insult,

Curse/Exclusion, Defamation, Sexual Talk, Defense, and Encouragement to

the harasser. The refined classes in step two and the sparsity of the data

make the classification task difficult as each class contains few samples,

which explains the low F1-score of 0.55 in their best performing model.

Hate Speech. As discussed in Chapter 1, hate speech is generally de-

fined as language that is targeted towards a group, with the intend to

be harmful or cause social chaos. This targeting is usually based on

characteristics such as race, color, ethnicity, gender, sexual orientation,

nationality or religion [36]. Hate speech is prohibited by law in many

countries, although the definitions may vary. In article 20 of the In-

ternational Covenant on Civil and Political Rights (ICCPR) it is stated that

"Any advocacy of national, racial or religious hatred that constitutes incite-

ment to discrimination, hostility or violence shall be prohibited by law" [18].

In Denmark, hate speech is prohibited by law, and is formally defined

as public statements where a group is threatened, insulted, or degraded

on the basis of characteristics such as nationality, ethnicity, religion, or

sexual orientation [3]. Hate speech is also generally prohibited by law in

the European Union, where it is defined as public incitement to violence

or hatred directed against a group defined on the basis of characteristics

such as race, religion, and national or ethnic origin [1]. Hate speech is,

however, not prohibited by law in the United States. This is due to the

Chapter 2. Related Work 8

fact that hate speech is protected by the freedom of speech act in the

First Amendment of the U.S. Constitution [7].

In [10] the focus is on classifying hate speech by clearly distinguish-

ing between general offensive language and hate speech. They define

hate speech as "language that is used to express hatred towards a targeted

group or is intended to be derogatory, to humiliate, or to insult the members

of the group" [10]. As the authors point out, the high use of profanity

on social media makes it vitally important to be able to effectively

distinguish between generally offensive language and the more severe

hate speech. The dataset is constructed by gathering data from Twitter,

using a hate speech lexicon to query the data. The crowd sourced anno-

tation platform CrowdFlower 1 is used for the annotation work, and each

tweet is coded by three or more annotators. The majority decision from

these annotators is then used to assign labels. The final dataset in [10]

consists of 24,802 annotated tweets, with only 5% of them belonging to

the hate speech class. While their model achieves an impressive over-

all F1-score of 0.90, the recall for the hate speech category is only 0.61,

which is most likely a direct result of the high imbalance in their dataset.

Contradicting definitions. When navigating the literature on the topic

of offensive speech detection, it becomes clear that one of the key chal-

lenges in doing meaningful research on the topic are the differences in

both the annotation-schemas and the definitions used, since it makes it

difficult to effectively compare results to existing work, as pointed out

by several authors ([27], [36], [39], [41]). These issues become clear when

comparing the work of [38], where racist and sexist remarks are classi-

fied as a subset of insults, to the work of [28], where similar remarks
1www.figure-eight.com

Chapter 2. Related Work 9

are split into two categories; hate speech and derogatory language. Another

clear example of conflicting definitions becomes visible when comparing

[40], where hate speech is considered without any consideration of over-

laps with the more general type of offensive language, to [10] where a

clear distinction is made between the two, by classifying posts as either

Hate speech, Offensive or Neither. This lack of consensus and the potential

overlap led [39] to propose annotation guidelines for tasks within the

offensive and harmful language category. They introduce a typology

that simply asks two questions: Is the language directed towards a specific

individual or enitity or is it directed towards a generalized group? and Is the

abusive content explicit or implicit?. In [42] they, however, argue that these

proposed guidelines do not effectively capture both the type and target

of the offensive language. They propose a new three-level annotation

model which is designed to capture characteristics from previous work

on the topic, and can therefore easily be extended to work with existing

datasets from previous work. This three-level annotation model is the

one used in our work and is discussed in more detail in Chapter 3.

2.3 Features

One of the most important factors to consider when it comes to auto-

matic classification tasks of any kind is what features should be used.

Various features have been explored in the literature on offensive and

abusive language detection and in the following paragraphs we discuss

some of them. In all the examples discussed here the tasks were ap-

proached as supervised classification tasks.

Chapter 2. Related Work 10

Top-level features. As discussed in [36], the most obvious information

comes from top-level features such as bag-of-words, uni-grams and

more complex n-grams, and the literature certainly supports this. In

their work on cyberbullying detection, [37] make use of word n-grams,

character n-grams, and bag-of-words. The word n-grams are used as

binary features, indicating the presence of a word n-gram in a post, and

the character n-grams are used to provide some abstraction from the

word level. They report the uni-gram bag-of-word features as the most

predictive, followed by character tri-gram bag-of-words. In [28], where

the focus is on abusive language detection, they make use of character

n-grams, as they are able to model the obfuscation of offensive words

effectively, as well as token n-grams. In their results, the character

n-grams are the most predictive features, underlying the need for the

modeling of un-normalized text (such as obfuscated terms). As pointed

out in [10], these simple top-level feature approaches are good but not

without their limitations, since they often have high recall but lead to

high rate of false positives. This is due to the fact that the presence

of certain terms can easily lead to misclassification when using these

types of features. Many words, however, do not clearly indicate which

category the text sample belongs to, e.g. the word gay can be used in

both neutral and offensive contexts.

Linguistic Features Various authors have explored refined linguistic

features in addition to some of the top-level features discussed earlier.

[28] make use of a number of linguistic features, including the length

of samples, average word lengths, number of periods and question

marks, number of capitalized letters, number of URLs, number of polite

words, number of unknown words (by using an English dictionary),

Chapter 2. Related Work 11

and number of insults and hate speech words. Although these features

have not proven to provide much value on their own, they have been

shown to be a good addition to the overall feature space [28].

Word Generalization. The top-level features discussed so far often

yield decent performance in general language classification tasks. This

performance is, however, often limited when it comes to more refined

tasks such as hate speech detection since most often the goal is to clas-

sify small samples of text. This becomes problematic since the top-level

features require the predictive words to occur in both the training set

and the test sets, as discussed in [36]. For this reason, some sort of word

generalization is required. Recently, the literature has been moving

towards a more distributed word representation and word embeddings

(created using neural networks) have become increasingly popular. In

[28], they explore three types of embedding-derived features. First, they

explore pre-trained embeddings derived from a large corpus of news

samples. Secondly, they make use of word2vec [23] to generate word

embeddings using their own corpus of text samples. Both the pre-

trained and word2vec models represent each word as a 200 dimensional

distributed real number vector. Lastly, they develop 100 dimensional

comment2vec model, based on the work of [20]. Their results show that

the comment2vec and the word2vec models provide the most predictive

features [28]. In [6] they experiment with pre-trained GloVe embed-

dings [30], learned FastText embeddings [24], and randomly initialized

learned embeddings. Interestingly, the randomly initialized embed-

dings slightly outperform the others [6].

Chapter 2. Related Work 12

Sentiment Analysis. A somewhat obvious source of information to de-

termine the offensiveness of a sample comes from its sementic score, and

this has been used widely in the literature in addition to other features.

In [37], sentiment scores are used to represent the number of positive,

negative, and neutral words, averaged over the sample length. Although

the sentiment scores perform poorly on their own, the authors report an

increase in accuracy when combined with the other features. In [10], a

sentiment lexicon designed for social media is used to assign sentiment

scores to each tweet. The authors of [10], however, point out that this

can lead to some misclassification, since their classifier relies too heavily

on these scores and makes decisions solely based on whether or not a

post contains terms with negative sentiment scores.

2.4 Models

A large variety of different models have been explored in the literature

on offensive, abusive and hateful language detection. Most of these

efforts approach the task as a supervised classification problem and

the methods range from simple lexical and statistical approaches to

linear machine learning models and deep neural networks. Most of the

best performing system in the literature use either machine learning

algorithms or deep neural networks, and in the following paragraphs

some of the more prominent ones are discussed.

Linear Machine Learning Models. In their work on hate speech detec-

tion, [10] explore a variety of machine learning algorithms introduced

in prior work such as Logistic Regression, Naive Bayes, Decision Trees,

Random Forest, and Linear Support Vector Machines (SVMs). Their final

Chapter 2. Related Work 13

model uses a Logistic Regression with L2 Regularization, resulting in an

overall precision of 0.91, recall of 0.90 and F1-score of 0.90. In our work

we base one of our classifiers (the Logistic Regression classifier, section

5.2.4) on the architecture proposed in [10].

Deep Learning Models. In their work on hate speech detection, the

authors of [6] explore various different neural network architectures in-

cluding Convolutional Neural Networks (CNNs) and Long Short Term Mem-

ory Networks (LSTMs). Their best model uses a LSTM, combined with

Gradient Boosted Decision Trees, and randomly initialized word embed-

dings (similar to what is discussed in section 5.1.8), resulting in a F1-

score of 0.93.

2.5 OffensEval

The authors of [41] created and managed a shared task on the topic

of offensive language detection named OffensEval2. The task consists

of three sub-tasks: A, B, and C. In sub-task A, the goal is to classify

a user-generated post as either offensive (OFF) or not offensive (NOT).

In sub-task B, the goal is to classify offensive posts as either untargeted

(UNT) or targeted insults/threats (TIN). In sub-task C, the goal is to

determine if a targeted offensive post is targeted towards an individual

(IND), a group (GRP) or some other entity (OTH). Sub-task C, therefore,

captures the characteristics of both cyberbullying (in the IND category)

and hate speech (in the GRP category), as they are defined in section

2.2. The sub-tasks and the task structure is described in more detail in

Chapter 3.
2www.competitions.codalab.org/competitions/20011

Chapter 2. Related Work 14

The participating teams in OffensEval use a variety of deep learning

models including Convolutional Neural Netoworks (CNNs), Recurrent

Neural Networks (RNNs), Bi-Directional Long Short Term Memory

Networks (BiLSTMs), as well as some state-of-the art deep learning

models such as ELMO [31], and BERT [11]. The results and the models

used are presented by the task authors in [42]. Based on these results,

it seems that deep learning models provide notable benefits over the

more simple and traditional models, as they generally rely on a smaller

set of features. In fact, state-of-the-art models such as BERT [11] have

been shown to work over a variety of language tasks, such as question

answering and language inference, without substantial task-specific

architectural modifications [11]. The next few paragraphs describe the

best performing systems in OffensEval as they are presented in [42].

Sub-task A. In the detection of offensive language in sub-task A (section

3.1.1), a system using the deep learning model BERT [11] was the most

successful, resulting in a macro averaged F1-score of 0.829.

Sub-task B. In the detection of whether an offensive post is targeted

or not, in sub-task B (section 3.1.2), the best performing system used a

rule based approach, resulting in a macro averaged F1-score of 0.755.

The second and third teams used ensembles of deep learning models

(including BERT [11]) and achieved macro averaged F1-scores of 0.739

and 0.719.

Sub-task C. In the detection of the type of target in sub-task C (section

3.1.3), the top performing team uses the deep learning model BERT

[11]. They use pre-trained GloVe [30] word-embeddings to represent the

Chapter 2. Related Work 15

words of a sample in a dense vector space, while maintaining semantic

similarity (similar to what is discussed in 5.1.8). Their system achieved

a macro averaged F1-score of 0.660.

In table 2.1 the results from OffensEval are presented as they appear

in [42]. These results also include the models (CNN, BiLSTM, and SVM)

and baselines (section 5.2.3) introduced in [41].

Chapter 2. Related Work 16

Sub-task A Sub-task B Sub-task C
Team Ranks F1 Range Team Ranks F1 Range Team Ranks F1 Range

1 0.829 1 0.755 1 0.660
2 0.815 2 0.739 2 0.628
3 0.814 3 0.719 3 0.626
4 0.808 4 0.716 4 0.621
5 0.807 5 0.708 5 0.613
6 0.806 6 0.706 6 0.613
7 0.804 7 0.700 7 0.591
8 0.803 8 0.695 8 0.588
9 0.802 9 0.692 9 0.587

CNN 0.800 CNN 0.690 10 0.586
10 0.798 10 0.687 11-14 .571-.580

11-12 .793-.794 11-14 .680-.682 15-18 .560-.569
13-23 .783-.789 15-24 .660-.671 19-23 .547-.557
24-27 .772-.779 BiLSTM 0.660 24-29 .523-.535
28-31 .765-.768 25-29 .640-.655 30-33 .511-.515
32-40 .750-.759 SVM 0.640 34-40 .500-.509

BiLSTM 0.750 30-38 .600-.638 41-47 .480-.490
41-45 .750-.749 39-49 .553-.595 CNN 0.470
46-57 .730-.739 50-62 .500-.546 BiLSTM 0.470
58-63 .721-.729 All TIN 0.470 SVM 0.450
64-71 .713-.719 63-74 .418-.486 46-60 .401-.476
72-74 .704-.709 75 0.270 61-65 .249-.340
SVM 0.690 76 0.121 All IND 0.210
75-89 .619-.699 All UNT 0.100 All GRP 0.180
90-96 .500-.590 All OTH 0.090

97-103 .422-.492
All NOT 0.420
All OFF 0.220

104 0.171

Table 2.1: Macro averaged F1-scores for the competing teams in OffensE-
val for sub-task as they are presented in [42]. The baselines and models
from [41] are also included in bold.

Chapter 3

Task Framing

As mentioned in the introduction, our work is to a large extent based on

the definitions and structure introduced in [41]. In this chapter we give

a comprehensive overview of the structure of the task and describe the

dataset provided in [41].

3.1 Classification Structure

The goal of our task is to identify offensive content in social media data

using automatic methods. The offensive content is broken into three

sub-tasks to be able to effectively identify both the type and the target of

the offensive posts. These three sub-tasks are chosen with the objective

of being able to capture different types of offensive language, such as

hate speech and cyberbullying (section 2.2). This annotation structure

can, therefore, be used in a wide range of offensive language detection

tasks. These three sub-tasks are described in detail in the following

sections.

Chapter 3. Task Framing 18

3.1.1 Sub-task A - Offensive language identification

In sub-task A the goal is to classify posts as either offensive or not of-

fensive. Offensive posts include insults and threats as well as any form

of untargeted profanity [42]. Each sample is annotated with one of the

following labels:

• Not Offensive (NOT). In English this could be a post such as #The-

NunMovie was just as scary as I thought it would be. Clearly the critics

don’t think she is terrifyingly creepy. I like how it ties in with #TheCon-

juring series. In Danish this could be a post such as Kim Larsen var

god, men hans død blev alt for hyped.

• Offensive (OFF). In English this could be a post such as USER is

a #pervert himself!. In Danish this could be a post such as Kalle er

faggot...

3.1.2 Sub-task B - Automatic categorization of offensive language types

In sub-task B the goal is to classify the type of offensive language by

determining if the offensive language is targeted or not. Targeted of-

fensive language contains insults and threats to an individual, group, or

others [42]. Untargeted posts contain general profanity while not clearly

targeting anyone [42]. Only posts labeled as offensive (OFF) in sub-task

A are considered in this task. Each sample is annotated with one of the

following labels:

• Targeted Insult (TIN). In English this could be a post such as

@USER Please ban this cheating scum. In Danish this could be a

post such as Hun skal da selv have 99 år, den smatso.

Chapter 3. Task Framing 19

• Untargeted (UNT). In English this could be a post such as 2 weeks

of resp done and I still don’t know shit my ass still on vacation mode. In

Danish this could be a post such as Dumme svin...

3.1.3 Sub-task C - Offensive language target identification

In sub-task C the goal is to classify the target of the offensive language.

Only posts labeled as targeted insults (TIN) in sub-task B are considered

in this task [42]. Each sample is annotated with one of the following

labels:

• Individual (IND): Posts targeting an individual. A named person,

or an unnamed person that is clearly part of the conversation. In-

sults and threats against an individual in this context are often

referred to as cyberbullying [42]. In English this could be a post

such as @USER Is a FRAUD Female @USER group paid for and or-

ganized by @USER. In Danish this could be a post such as USER

du er sku da syg i hoved. These examples further demonstrate that

this category captures the characteristics of cyberbullying, as it is

defined in section 2.2.

• Group (GRP): Posts targeting a group of people based on ethnicity,

gender or sexual orientation, political affiliation, religious belief, or

other characteristics. These types of insults and/or threats against

groups in this context are often defined as hate speech [42]. In

English this could be a post such as #Antifa are mentally unstable

cowards, pretending to be relevant. In Danish this could be a post

such as Åh nej! Svensk lorteret! These examples clearly show that

this category captures the characteristics of hate speech as it is

defined in section 2.2.

Chapter 3. Task Framing 20

• Other (OTH): The target of the offensive language does not fit the

criteria of either of the previous two categories. [42]. In English

this could be a post such as And these entertainment agencies just

gonna have to be an ass about it.. In Danish this could be a post such

as Netto er jo et tempel over lort.

3.2 The OLID Dataset

The authors of [42] publish a large dataset (titled OLID) alongside the

shared task. It contains English tweets, gathered using the Twitter API

to search for tweets containing certain keywords [41]. The data was an-

notated using the schema described in section 3.1 by using the crowd-

sourcing platform Figure Eight1. The resulting dataset contains 14,100

annotated tweets in total, and is split into a train and a test set of sizes

13,240 and 860. The distribution of labels in the OLID dataset is pre-

sented in table 3.1, using the same format as presented in [41].

A B C Train Test Total
OFF TIN IND 2,407 100 2,507
OFF TIN OTH 395 35 430
OFF TIN GRP 1,074 78 1,152
OFF UNT 524 27 551
NOT 8,840 620 9,460
All 13,240 860 14,100

Table 3.1: The distribution of labels in the OLID dataset for both the
train and test set [42].

1www.figure-eight.com

Chapter 4

Danish Dataset

The main goal of our work is to develop an offensive and hate speech de-

tection system for the Danish language. We construct a Danish dataset

suitable for the tasks and to our knowledge no such dataset exists. Our

resulting dataset consists of 3600 user-generated posts from various so-

cial media platforms, annotated with the schema presented in [41]. This

chapter details the construction of this Danish dataset, as well as the

annotation procedure. We also discuss the construction of a Danish hate

speech lexicon. We, furthermore, discuss some of the privacy concerns

and the necessary steps that need to be taken when developing a dataset

from user-generated content. Finally, the resulting dataset is presented

as well as the distribution of samples between the different classes.

4.1 Collection

One of the main concerns when it comes to collecting data for the task

of offensive language detection is to find high quality sources of user-

generated content that represent each class in the annotation-schema

Chapter 4. Danish Dataset 22

to some extent. In our exploration phase we considered various social

media platforms such as Twitter1, Facebook2, and Reddit3.

Twitter. Twitter has been used extensively as a source of user-generated

content in various language classification tasks and it was the first

source considered in our initial data collection phase. The platform

provides excellent interface for developers making it easy to gather

substantial amount of data with limited efforts. It quickly became clear,

however, after some initial inspection of the data collected that this

would not be a suitable source of data for our task. This is due to the

fact that Twitter has limited usage in Denmark, resulting in low quality

data with most of the classes of interest unrepresented.

Facebook. We next considered Facebook, and the public page for the

Danish media company Ekstra Bladet4. We looked at user-generated

comments on articles posted by Ekstra Bladet, and initial analysis of

these comments showed great promise as they vary a lot. The user

behaviour on the page and the language used ranges from neutral lan-

guage to very aggressive, where some users pour out sexist, racist and

generally hateful language. We did, however, face some obstacles when

collecting data from Facebook, due to the fact that Facebook recently

made the decision to shut down all access to public pages through

their developer interface5. This makes computational data collection

approaches impossible for public pages and user-generated comments.
1www.twitter.com
2www.facebook.com
3www.reddit.com
4www.facebook.com/ekstrabladet
5www.newsroom.fb.com/news/2018/04/restricting-data-access

Chapter 4. Danish Dataset 23

Given this obstacle, we turned to manual collection of randomly se-

lected user-generated comments from Ekstra Bladet’s public page, and

these efforts resulted in a dataset of 800 comments of high quality.

Reddit. Given that language classification tasks in general require sub-

stantial amounts of data, our exploration for suitable sources continued

and our search next led us to Reddit. We wrote a simple script6 using

the developer interface and used it to collect the top 500 posts from

the Danish sub-reddits r/DANMAG7 and r/Denmark8, as well as the user

comments contained within each post. These efforts resulted in over 13

thousand user-generated comments.

4.2 Danish Hate Speech Lexicon

In efforts to maximize the number of user-generated comments from

Reddit belonging to the classes of interest in our final dataset we pub-

lished a survey on Reddit9, asking Danish speaking users to suggest

offensive, sexist, and racist terms. As mentioned in Chapter 2, the lan-

guage and user behaviour varies a lot between platforms, so the goal

with posting the survey on Reddit was to obtain platform specific terms.

These efforts resulted in a list of 113 offensive and hateful terms which

were then used to query the user comments from Reddit. The remain-

der of comments in the corpus (i.e. the comments that did not contain

any of the hateful terms from the lexicon) were shuffled and a subset
6www.github.com/gsig123/reddit_scraper
7www.reddit.com/r/DANMAG/
8www.reddit.com/r/denmark/
9www.reddit.com/r/Denmark/comments/9ozhdc/hateracistsexistetc terms in

danish/

Chapter 4. Danish Dataset 24

of this corpus was then used to fill the remainder of the final dataset.

The resulting dataset contains 3600 user-generated comments, 800 from

Ekstra Bladet on Facebook, 1400 from r/DANMAG and 1400 from r/Den-

mark. A detailed breakdown of the final dataset is presented in section

4.5. The full Danish Hate Speech lexicon from our survey can be found in

Appendix A.

4.3 Privacy Concerns

In light of the General Data Protection Regulations in Europe (GDPR)10 and

the increased concern for online privacy, we applied some necessary

pre-processing steps on our dataset to ensure the privacy of the authors

of the comments that were used. First of all, personally identifying con-

tent (such as the names of individuals, not including celebrity names)

was removed. This was handled by replacing each name of an individ-

ual (i.e. author or subject) with @USER, as presented in both [41] and

[10]. Secondly, all comments containing any sensitive information were

removed. We classify sensitive information as any information that can

be used to uniquely identify someone by the following characteristics;

racial or ethnic origin, political opinions, religious or philosophical be-

liefs, trade union membership, genetic data, and bio-metric data.

4.4 Annotation Procedure

We base our annotation procedure on the guidelines and schemas pre-

sented in [41], discussed in detail in section 3.1. As a warm-up proce-

dure, the first 100 posts were annotated by two annotators (the author
10www.eugdpr.org

Chapter 4. Danish Dataset 25

and the supervisor) and the results compared. This was used as an op-

portunity to refine the mutual understanding of the task at hand and

to discuss the mismatches in these annotations for each sub-task. We

used a Jaccard index [15] to assess the similarity of our annotations. In

sub-task A the Jaccard index of these initial 100 posts was 41.9%, 39.1%

for sub-task B , and 42.8% for sub-task C. After some analysis of these

results and the posts that we disagreed on it became obvious that to a

large extent the disagreement was mainly caused by two reasons:

1. Guesswork of the context where the post itself was too vague to

make a decisive decision on whether it was offensive or not with-

out more context. An example of this is a post such as Skal de

hjælpes hjem, næ nej de skal sendes hjem, where one might conclude,

given the current political climate, that this is an offensive post tar-

geted at immigrants. The context is, however, lacking so we cannot

make a decisive decision. This post should, therefore, be labeled

as non-offensive, since the post does not contain any profanity or

a clearly stated group.

2. Failure to label posts containing some kind of profanity as of-

fensive (typically when the posts themselves were not aggressive,

harmful, or hateful). An example could be a post like @USER sgu

da ikke hans skyld at hun ikke han finde ud af at koge fucking pasta,

where the post itself is rather mild, but the presence of fucking

makes this an offensive post according to our definitions.

In light of these findings our internal guidelines were refined so that

no post should be labeled as offensive by interpreting any context that

is not directly visible in the post itself (tackling disagreement case 1)

Chapter 4. Danish Dataset 26

and that any post containing any form of profanity should automat-

ically be labeled as offensive (handling disagreement case 2). These

stricter guidelines made the annotation procedure considerably easier

while ensuring consistency. The remainder of the annotation task was

performed by the author, resulting in 3600 annotated samples.

4.5 Final Dataset

In table 4.1 the distribution of samples by sources in our final dataset

is presented. Although a useful tool, using the hate speech lexicon,

discussed in section 4.2, as a filter only resulted in 232 comments. As

mentioned in section 4.2, the remaining comments from Reddit were

then randomly sampled from the remaining corpus.

Data Source Number of Comments % of Total
Facebook - Ekstra Bladet 800 22.2

Reddit - r/Denmark w offensive term 200 5.6
Reddit - r/Denmark w/o offensive term 1,200 33.3
Reddit - r/DANMAG w offensive term 32 0.9

Reddit - r/DANMAG 1,368 38.0

Table 4.1: The distribution of samples by sources in our final dataset.
"w offensive terms" represents that the samples were retrieved using the
Danish hate speech lexicon (section 4.2) as a filter.

The fully annotated dataset was split into a train and test set, while

maintaining the distribution of labels from the original dataset. The

training set contains 80% of the samples, and the test set contains 20%.

Table 4.2 presents the distribution of samples by label for both the train

and test set. It is clear that the dataset is highly skewed, with around

88% of the posts labeled as not offensive (NOT). This is, however, gen-

erally the case when it comes to user-generated content on online plat-

Chapter 4. Danish Dataset 27

forms, and any automatic detection system needs be able to handle the

problem of imbalanced data in order to be truly effective.

Sub-Task A Sub-Task B Sub-Task C Train Test Total
OFF TIN IND 77 18 95
OFF TIN OTH 30 6 36
OFF TIN GRP 98 23 121
OFF UNT 147 42 189
NOT 2,527 632 3,159
ALL 2,879 721 3,600

Table 4.2: The distribution of labels in the annotated Danish dataset for
both the train and test set.

Chapter 5

Methods

Our goal is to create an automatic offensive language classification sys-

tem designed to work well for both English and Danish. To accomplish

this, we consider a wide variety of features and experiment with a num-

ber of model architectures. All of our development work is performed

using Python 3 and a variety of language modeling and machine learn-

ing libraries such as NLTK [22], Scikit Learn [22], Tensorflow [5], and Keras

[9]. In this chapter we discuss the development of of our systems by

describing in detail the features used and our final model architectures.

5.1 Features

As with any classification task the set of features used in the prediction

models are of vital importance and this is especially true for language

classification tasks. It is far from trivial to represent natural language

in a computational friendly way while maintaining important syntactic

and contextual information. In this section we describe in detail the

features used in our models and the motivation behind these decisions.

Chapter 5. Methods 29

5.1.1 Tokenization

The first step in the feature extraction process is the tokenization of all

samples in the vocabulary in order to simplify the inputs while main-

taining the essential information. The tokenization step involves split-

ting each sample into a list of tokens (i.e. words and symbols) and

removing non-essential tokens from the list. These non-essential tokens

are tokens that do not attribute any notable value to the meaning of the

text samples, and are therefore non-essential in our classification task.

First, all digits, emoticons, and URLs are removed from the sentences

using regular expressions. Secondly, Twitter hashtags (e.g. #hashtag)

and mentions (e.g. @mention) are replaced with HASHTAGHERE and

MENTIONHERE, inspired by the work of [10]. Next, so called stop-words

and punctuation symbols are removed using the natural language pro-

cessing library NLTK [22]. Stop-words are words that are too frequent in

natural language to be good indicators for any sort of classification task

(e.g. is, if, but, ...). Finally, all remaining tokens are lower-cased. The

final output from this tokenization step is a simplified list of tokens for

each sample in the corpus.

5.1.2 N-grams

So called n-grams1 are used within a few of our feature extraction meth-

ods. N-grams represent a contiguous sequence of n items in a sample,

and allow us to derive meaning from contiguous sequences instead of

only considering a single item at a time. N-grams can be used with

various types of items in a text sequence such as characters and words.

N-grams can be of various sizes and derive their name from the size
1https://en.wikipedia.org/wiki/N-gram

Chapter 5. Methods 30

(e.g. uni-grams for 1-grams, and bi-grams for 2-grams). Given the sen-

tence: "I like n-grams a lot" the following uni-, bi-, and tri-word-grams

can be derived: "I", "like", "n-grams", "a", "lot", "I like", "like n-grams",

"n-grams a", "a lot", "I like n-grams", "like n-grams a", "n-grams a lot".

Word n-grams can often be useful in language classification tasks, as the

meaning of a single word is most often controlled by the surrounding

words.

5.1.3 Word-to-Index

In order to prepare our tokenized sequences from section 5.1.1 and make

them ready to use with our deep learning models we need to transform

them into sequences of real numbers of a fixed length. We create a word-

to-index dictionary that maps all tokens in our vocabulary to a unique

integer index. This word-to-index dictionary is then used to transform

all token sequences into sequences of integers. These sequences are of

various lengths as the number of tokens vary from sample to sample but

our deep learning models require these sequences to be of a fixed length.

In order to accomplish this we use the Pad Sequences2 module from Keras

[9] to pad the sequences to a fixed length of 100. The sequence length

was determined during the initial experimental phase and according

to those experiments this sequence length provided a good balance be-

tween relatively low training time and high accuracy. The sequences

that contain fewer than 100 tokens are padded (using a unique padding

integer) to the required length (by appending the padding integer to the

sequence), while the sequences that are longer are cut down. Figure 5.1

visualizes the word-to-index and padding process.
2www.keras.io/preprocessing/sequence/#pad_sequences

Chapter 5. Methods 31

Figure 5.1: A visualization of the word-to-index and padding process.
In this example, the integer 0 is used as a padding index.

5.1.4 Sentiment Scores

As mentioned in Chapter 2, sentiment scores are a common addition

to the feature space of classification systems dealing with offensive and

hateful speech. Sentiment scores give the polarity of a word or a text

sample (e.g. negative, neutral or positive). They are independent mod-

els, trained specifically for predicting the sentiment of samples. In our

work we experiment with sentiment scores and some of our models

rely on them as a dimension in their feature space. To compute these

sentiment score features our systems make use of two Python libraries:

VADER [17] and AFINN [26]. VADER is a sentiment analyzer specifi-

cally tuned to work well with social media data in English. Our mod-

Chapter 5. Methods 32

els use the compound attribute, which gives a normalized sum of sen-

timent scores over all words in the sample. The compound attribute

ranges from �1 (extremely negative) to +1 (extremely positive). Since

VADER provides limited support for other languages than English, we

use AFINN for our Danish models. AFINN is a wordlist-based ap-

proach, with full support for Danish. It gives an integer sentiment score

for each text sample based on the number of positive or negative terms.

Positive scores indicate a positive sample, and negative scores indicate

a negative sample.

5.1.5 Linguistic Features

As well as some of the top-level features mentioned so far, some of

our methods also make use of additional low-level linguistic features

inspired by the work of [10]. These linguistic features are the follow-

ing; syllable count, character count, word count, average syllable count,

number of unique terms, and the number of twitter objects (i.e. hash-

tags, mentions, re-tweets and URLs). We also make use of Flesch-Kincaid

Grade Level and Flesch Reading Ease scores3. Flesch Reading Ease is a way

to measure how easy a sentence is to read; higher scores indicate that

the sentence is easy to read (equation 5.1). The Flesch-Kincaid Grade

Level is a metric assessing the level of reading ability required to easily

understand a sample of text (equation 5.2).

207.835 � 1.015
✓

total words
total sentences

◆
� 84.6

✓
total syllables

total words

◆
(5.1)

3www.en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests

Chapter 5. Methods 33

0.39
✓

total words
total sentences

◆
+ 11.8

✓
total syllables

total words

◆
� 15.59 (5.2)

5.1.6 Part-of-Speech Tagging

Some of our methods make use of Part-of-Speech (POS) Tagging4. POS-

tagging is the process of assigning every word in a sample a part of

speech token (i.e. noun, verb, adjective, etc.) and these POS-tags are a

common addition to the feature space of language modeling algorithms.

These POS-tags provide some generalization over the token level fea-

tures, and sequences of POS-tags are often good indicators of the type

and function of a text sample. In our methods, we start by transforming

each tokenized sample into a sequence of POS-tags using the NLTK [22]

library. These sequences of POS-tags are then transformed into a ma-

trix where each row contains the frequency of uni-, bi-, and tri-grams

of the POS-tags in the corresponding sample. Unfortunately, the NLTK

POS-tagger does not support the Danish language. These features are,

therefore, only used in systems for the English language.

5.1.7 TF-IDF

TF-IDF stands for term frequency-inverse document frequency5 and the TF-

IDF score is used to evaluate how important a token is to a sample in

the overall corpus. The TF-IDF weight consists of two parts, the term

frequency (TF) and the inverse document frequency (IDF). The term fre-

quency calculates the number of times a token appears in a sample,
4www.en.wikipedia.org/wiki/Part-of-speech_tagging
5www.tfidf.com

Chapter 5. Methods 34

divided by the number of tokens in the sample (equation 5.3). The in-

verse document frequency measures how important a token is in the

overall corpus, by computing the logarithm of the number of samples

in the corpus divided by the number of samples containing the token

(equation 5.4). The inverse document frequency, therefore, scales up the

score for rare tokens that might still be important for the context, while

scaling down the score for very frequent tokens that might provide less

meaning (such as stop-words, section 5.1.1). The final TF-IDF score is

the product of the two parts (equation 5.5). In some of our methods,

we make use of TF-IDF scores by constructing a matrix where each row

contains the compounded TF-IDF scores for uni-, bi-, and tri-grams con-

tained in the corresponding sample. We use the TfidfVectorizer package

from Scikit Learn [29], with the max_features parameter set to 100.

TF =
Number of times the token appears in the sample

Total number of tokens in the sample
(5.3)

IDF = loge

✓
Total number of samples

Number of samples with the token in it

◆
(5.4)

TF-IDF = TF · IDF (5.5)

5.1.8 Word Embeddings

As discussed in Chapter 2, many authors have experimented with

and used word embeddings as features in various offensive language

detection tasks. Word embeddings are distributed real number vector

representations of words, designed to maintain semantic and contextual

Chapter 5. Methods 35

similarity (i.e. similar words have similar word embedding vectors).

As mentioned in [32], one of the key advantages of word embeddings

is that they enable generalization of words that do not appear in la-

beled training data by embedding lexical features from a large corpus

into a relatively low dimensional Euclidian space. Word embedding

models are generally created using neural networks that are trained

on a large unlabeled corpus. In our work we make use of two types

of word embeddings; pre-trained FastText embeddings [13] and randomly

initialized learned embeddings. In our initial experimental phase we also

considered Word2Vec [23] trained on our own corpus, pre-trained GloVe

[30] vectors and FastText trained on our own corpus. These initial ex-

periments indicated lower performance from these additional methods.

The increased effectiveness of pre-trained FastText embeddings over

GloVe and Word2Vec can likely be explained by the fact that FastText

is trained on character n-grams, while both GloVe and Word2Vec are

trained on word n-grams. Given the fact that we are working with social

media data, it is likely that a lot of the words in our corpus are rare,

making the character n-gram approach more effective. The following

sections describe the pre-processing steps necessary to make use of the

pre-trained FastText embeddings and the randomly initialized learned

embeddings.

Pre-trained Embeddings. The pre-trained FastText [24] embeddings are

trained on data from the Common Crawl6 project and Wikipedia, in 157

languages (including English and Danish). The vast amount of data

used in the creation of these embeddings is promising since they should
6www.commoncrawl.org

Chapter 5. Methods 36

prove effective in providing generalization for a wide variety of lan-

guage modeling tasks. The FastText pre-trained embeddings are pro-

vided in a .txt file, containing over 2 million tokens for each language,

along with their embeddings. FastText also provides trained models

that can be used to predict word embeddings for out-of-vocabulary (OOV)

words (i.e. tokens that were not found in the pre-trained FastText .txt

file). This is a major advantage since a lot of the challenges that arise

when using pre-trained word embeddings come from the fact that it is

common that some words in the corpus are not found in the pre-trained

corpus. This often happens because of misspellings and obfuscation of

words, which is common in raw social media data. In our work, we

make use of these FastText pre-trained embeddings by performing the

following steps:

1. Tokenize the full corpus (for each language).

2. Look up the word embeddings for each token in the pre-trained

vocabulary. If it exists, we assign the token the existing word em-

bedding, otherwise we save the token as an OOV token.

3. Use the pre-trained FastText OOV model to predict word embed-

dings for the OOV tokens, assigning the resulting embedding vec-

tors to the OOV tokens.

4. Construct a word-to-index dictionary containing a token to integer

mapping for all tokens in our corpus.

5. Use the word-to-index dictionary to construct an embedding ma-

trix, where row i contains the token embedding for the token that

maps to index i in the word-to-index dictionary.

Chapter 5. Methods 37

The resulting embedding matrix is then used to create the embedding

layer in the models that make use of pre-trained embeddings (Fast-

BiLSTM and AUX-Fast-BiLSTM).

Randomly Initialized Learned Embeddings. Some of our models make

use of randomly initialized embeddings, that are updated during train-

ing. In this case, the embedding matrix for the embedding layer is initial-

ized using a random uniform distribution.

5.2 Models

We introduce a variety of models in our work to compare different

approaches to the task at hand. First of all, we introduce naive base-

lines that simply classify each sample as one of the categories of interest

(based on [41]). Next, we introduce a logistic regression model based on

the work of [10], using the same set of features as introduced there. Fi-

nally, we introduce three deep learning models: Learned-BiLSTM, Fast-

BiLSTM, and AUX-Fast-BiLSTM. The logistic regression model is built

using Scikit Learn [29] and the deep learning models are built using

Keras [9]. The following sections describe these model architectures in

detail, the algorithms they are based on, and the features they make use

of.

5.2.1 Logistic Regression

One of our model architecture uses a Logistic Regression as the classifica-

tion algorithm. Logistic Regression is a widely used statistical method

for modeling dependent variables7. It is an extension to linear regres-
7www.en.wikipedia.org/wiki/Logistic_regression

Chapter 5. Methods 38

sion, where the target variables are categorical8. Logistic regression

predicts the probability of events by using a logit function. This logit

function is usually a Sigmoid function (equation 5.7), mapping contin-

ues variables to discrete values. A logistic regression (equation 5.8) is

computed by applying the Sigmoid function to the linear regression

(equation 5.6). Here, y is the dependent variable, X1, . . . , Xn are the

explanatory variables, and b0, . . . , bn are the constants we are trying to

estimate9. In logistic regression, the estimation is then typically done by

using Maximum Likelihood Estimation10.

y = b0 + b1X1 + b2X2 + · · ·+ bnXn (5.6)

p =
1

1 + e�y (5.7)

p =
1

1 + e�(b0+b1X1+b2X2+···+bnXn)
(5.8)

5.2.2 Long Short Term Memory Networks

Our neural network models make use of Recurrent Neural Networks

(RNNs) [12] as a key element in their architecture. RNNs are designed

to capture information in sequences, which makes them a good fit for

the task at hand. RNNs compute a fixed size vector representation of

a sequence, by reading in n vectors x1, . . . xn, and producing an output

vector hn that depends on the entire sequence [33]. This vector, hn, can
8www.datacamp.com/community/tutorials/understanding-logistic-regression-

python
9www.datacamp.com/community/tutorials/understanding-logistic-regression-

python
10www.en.wikipedia.org/wiki/Maximum_likelihood_estimation

Chapter 5. Methods 39

then be used in the consecutive layers of the neural network. The RNN

layer is trained alongside the whole network, so that the hidden repre-

sentation of the sequences and the information necessary for the task at

hand is captured during the training phase [33]. Long short term memory

networks (LSTMs) [16] are an extension of RNNs, designed to prevent

vanishing gradients, which is a common problem when using RNNs

with longer sequences [33]. This is accomplished, in simple terms, by

adding layers to determine which information from the previous items

in a sequence should be kept (the input gate layer) and which informa-

tion should be thrown away (the forget gate layer) 11. Other methods such

as Hidden Markov Models (HMM) [34] are commonly used to model se-

quences. The main benefit of using LSTMs in language modeling tasks

comes from the fact that LSTMs have the ability to forget information

(using the forget gate layer) while maintaining long-range dependen-

cies.

Bi-directional RNNs (BiRNNs) are another extension of RNNs, where

each input sequence is read twice, from left to right and right to left [33].

This bi-directional approach is based on the idea that the elements in a

sequence are based on both the previous and future elements. This is

usually the case with natural language, making this a promising ap-

proach for the task at hand. Our models make use of Bi-directional

LSTMs (BiLSTMs), where the output vectors from the forward and back-

ward pass are concatenated together. This method is used as an attempt

to capture complex hidden patterns in the input sequences.
11www.colah.github.io/posts/2015-08-Understanding-LSTMs/

Chapter 5. Methods 40

5.2.3 Baselines

Following the work of [41], we create simple baseline prediction mod-

els that simply classify all samples as the class containing the largest

amount of samples. This allows us to investigate the properties and dis-

tribution of the samples in the datasets, and to evaluate how well our

classifiers are performing. The baseline models are the following:

• Sub-Task A: All NOT for both languages.

• Sub-Task B: All TIN for both languages.

• Sub-Task C: All IND for English and All GRP for Danish.

5.2.4 Logistic Regression Classifier

We base one of our model on the works of [10], where the objective is to

distinguish between neutral, offensive and hateful language.

As mentioned in section 2.2, their model achieves an impressive F1-

score of 0.90, which sparked the interest to experiment with the archi-

tecture presented in [10] as a possible solution to the problem at hand.

The logistic regression classification model uses a wide variety of fea-

tures. First, all samples are tokenized using the procedure introduced

in section 5.1.1. Next, uni-grams, bi-grams, and tri-grams are created,

weighted by their TF-IDF score (as described in section 5.1.7). To cap-

ture information about the syntactic structure, a POS-tag uni-, bi-, and

tri-gram matrix is created using the method discussed in section 5.1.6.

Given the limited support for Danish, the POS-tags are only included

in the classifier for the English language (as discussed in 5.1.6). Senti-

ment scores (section 5.1.4) are also calculated for each sample, as well

Chapter 5. Methods 41

as linguistic counters for the number of syllables, number of characters,

number of tokens, average number of syllables, Flesch Reading Ease

and Flesch-Kincaid Grade Level scores, number of re-tweets, number of

Twitter mentions, number of Twitter hashtags, and number of URLs (as

described in section 5.1.5). All of the features are then concatenated to-

gether and used as inputs to the classifier. To reduce the dimensionality

of the feature space, the SelectFromModel module from Scikit Learn [29]

is used to select the best set of features.

The logistic regression is implemented using the LogisticRegression

module from the Scikit Learn library [29]. The class weights are set to

balanced and the optimization algorithm used is Limited-memory BFGS

(lbfgs) [21]. The penalty is set to L2, and the regularization strength is

set to 0.01.

5.2.5 Hyper-Parameters in Deep Learning Models

In order to get as close as possible to the optimal set of hyper-parameters

for our deep learning models we perform hyper-parameter tuning. Grid

Search is one of the most popular method of parameter optimization. It

selects the optimal set of parameters from a provided set. Other meth-

ods, such as Random Search [8], might offer speed and computational

efficiency but this comes at the cost of accuracy. In our work we per-

form Grid Search Cross Validation using the corresponding module from

Scikit Learn [29] to determine the optimal dropout amount, the batch

size, the optimizer and the learning rate.

In the search for the optimial optimizer we consider Adam [19] and

Stochastic Gradient Descent (SGD) [35]. Stochastic Gradient Descent

is an optimization algorithm for unconstrained optimization problems.

Chapter 5. Methods 42

In its approximation of the true gradient it considers a single training

sample at a time [4]. Adam is a more memory efficient stochastic op-

timization method. It computes individual adaptive learning rates for

different parameters, while Stochastic Gradient Descent has the same

type of effect on all parameters [19].

From the Grid Search Cross Validation experiments we conclude that

the best set of hyper-parameters for all of our models are the following:

batch size of 128, Adam [19] as the optimization algorithm with a learn-

ing rate of 0.001, and a dropout rate of 0.2 between all layers. To tackle

the imbalance of the samples in our dataset we use class weights in all

of our deep learning models. Each class is given a weight equal to the

inverse of the number of samples it contains. We, furthermore, use grid

search cross validation to determine the number of nodes for each layer

in our models by trying out a large variety of combinations, using the

parameters found in the previous step and training for 20 epochs. The

optimal number of nodes according to these experiments are discussed

in the following subsection.

5.2.6 Learned-BiLSTM Classifier

The Learned-BiLSTM model is a deep neural network model built with

the Keras Sequential API12. It consists of four parts; a randomly ini-

tialized embedding layer (as described in section 5.1.8), a bi-directional

long short memory (BiLSTM) layer, a fully connected hidden layer, and

a fully connected output layer. The model takes padded word-to-index

sequences of length 100 as input (section 5.1.3), where each sequence

represents a sample from the dataset. The embedding layer consists of
12www.keras.io/getting-started/sequential-model-guide/

Chapter 5. Methods 43

300 dimensional vectors, where each vector represents a unique token in

the tokenized corpus. The integers from the input sequences are used

to select which vectors from the embedding layer should be used for

the current sample. The selected vectors are then used as input to the

BiLSTM layer. The BiLSTM layer consists of two parts; a forward and

a backward LSTM, each of size 20. Each sequence of word embeddings

from the embedding layer is run through both the forward and back-

ward LSTMs and the resulting vectors are then concatenated together,

creating a vector of size 40. This vector is then used as input to the

fully connected hidden layer, which contains 16 hidden units. This hid-

den layer is then fully connected to the output layer, which represents

the output of the network (i.e. the predictions of the model). The out-

put consists of a single node for sub-tasks A and B (binary NOT/OFF,

UNT/TIN) and 3 nodes in sub-task C (IND/GRP/OTH). The activation

function used in the LSTM layers is tanh and ReLU is used in the hid-

den layer. For sub-tasks A and B, the activation function for the output

layer is Sigmoid, and Softmax is used for sub-task C. The loss is calcu-

lated using the Binary Crossentropy loss function. During training, the

embedding vectors in the embedding layer are updated, which is why

our model is named Learned-BiLSTM. In figure 5.2, the architecture of

the model is presented.

5.2.7 Fast-BiLSTM Classifier

The Fast-BiLSTM model is built using the same layers and the same set

of hyper-parameters as the Learned-BiLSTM model. The only difference

is that instead of initializing the embedding layer randomly and learning

the embeddings during training, the embedding layer is initialized with

Chapter 5. Methods 44

the FastText embeddings (as discussed in section 5.1.8). These embed-

dings stay fixed and are not updated during the training of the model.

Figure 5.2 presents a high level overview of the model architecture.

Figure 5.2: The high level architecture of both the Learned- and Fast-
BiLSTM models. The only difference between the two is that the vectors
in the embedding layer are updated during training for the Learned-
BiLSTM model, while they stay fixed in the Fast-BiLSTM model. The
output layer consists of one node in the case of sub-task A (NOT/OFF)
and B (UNT/TIN), and 3 nodes in the case of sub-task C (IND, GRP,
OTH).

5.2.8 AUX-Fast-BiLSTM Classifier

The Fast-BiLSTM model is fairly simple, since the only features it ac-

cepts are the padded word-to-index sequences. In order to experiment

with a wider combination of features, we extend the Fast-BiLSTM model

to AUX-Fast-BiLSTM, which accepts auxiliary features in the form of a

feature matrix, where each row contains the additional features for the

corresponding sample.

These additional features are created by tokenizing each sample (sec-

tion 5.1.1), and computing the following; sentiment scores (section 5.1.4),

uni-, bi-, and tri-grams weighted by their TF-IDF scores (section 5.1.7),

Chapter 5. Methods 45

bi-, uni-, and tri-gram POS-tags (section 5.1.6), counters for the number

of characters, number of syllables, number of words, number of Twitter

hashtags, number of URLs, number of Twitter mentions, and number of

Twitter re-tweets, as well as the Flesch reading ease and Flesch-Kincaid

reading grade level scores (section 5.1.5). Note that these are the same

features as used in the Logistic Regression classifier (section 5.2.4).

The model is built using the Keras Functional API13 and consists of

two parts. First of all, we have the previously described embedding layer

and BiLSTM layer for the padded word-to-index features. The second

part, which accepts the additional feature matrix rows as input, consists

of an input layer of size equal to the number of features and a fully

connected hidden layer with 16 hidden units. The output from both

the fully connected layer and the BiLSTM layer is then concatenated

and used as input to an additional fully connected hidden layer, also

containing 16 units. Finally, we have the output layer, with the same

number of units as in the other deep learning models. The activation

function used in the LSTM layers is tanh, ReLU is used in both of the

hidden layers and Sigmoid is used in the output layer in the case of

sub-task A and B, and Softmax in the case of sub-task C. The loss is

then calculated using the Binary Crossentropy loss function, as it is in the

other deep learning models. A high-level overview of the architecture

described in this section is presented in figure 5.3.

13www.keras.io/getting-started/functional-api-guide/

Chapter 5. Methods 46

Figure 5.3: A high-level overview of the AUX-Fast-BiLSTM model archi-
tecture.

Chapter 6

Experimental Setup

We train all models from Chapter 5 over all the sub-tasks introduced

in Chapter 3. Since the goal is to develop systems that can be used for

both English and Danish we train our models using datasets from each

language. The models are then tested using established test sets for each

sub-task discussed in Chapters 3 and 4. To evaluate the performance of

our models we use established quality metrics such as Recall, Precision,

and the F1-score. We, furthermore, conduct error analysis of the pre-

dictions made by the best performing models in our evaluation phase

(section 7.3). In this chapter, we discuss the datasets used in training

for each of the sub-tasks and each language (section 6.1), and the train-

ing and testing procedure (section 6.2). Finally, we present the quality

metrics used in the evaluation of our models (section 6.3.1).

6.1 Datasets

We conduct independent experiments for each language. The following

sections describe in detail the datasets used in these experiments for

Chapter 6. Experimental Setup 48

each sub-task and each language.

6.1.1 English

• Sub-task A - Offensive language identification. In our experi-

ments for English and sub-task A, we make use of the full OLID

training dataset (discussed in Chapter 3) as well as the dataset in-

troduced in [10] (which we refer to as HSAOFL). The HSAOFL

dataset is originally annotated with different guidelines, annotat-

ing posts as either offensive, hate speech, or neither. Given that for

sub-task A, the offensive and hate speech labels belong to the same

category within the annotation schema used in our work, we trans-

form all samples labeled with either of these to OFF. Similarly, the

neither category is mapped to NOT. This makes it trivial to use the

HSAOFL dataset with our models without any modifications. Ta-

ble 6.1 presents the distribution of labels in the modified HSAOFL

dataset. In our experiments for sub-task A, all models are trained

using both the OLID dataset on its own as well as the OLID and

HSAOFL datasets combined. The OLID dataset contains 13,240

samples (table 3.1) and the HSAOFL dataset contains 24,783 sam-

ples (table 6.1). The test set used in this sub-task contains 860

samples (table 3.1).

• Sub-task B - Automatic categorization of offensive language

types. In sub-task B, we only make use of the OLID training set.

We only include samples that are labeled as OFF in sub-task A,

since the goal of this task is only to determine if the offensive sam-

ples are targeted or not. The training set for this sub-task contains

4,400 samples and the test set contains 240 samples (table 3.1).

Chapter 6. Experimental Setup 49

• Sub-task C - Offensive language target identification. In sub-task

C, we also only make use of the OLID training set. Similarly, we

only include samples that are labeled as TIN in sub-task B, since

the goal of this task is only to determine the type of the targeted

samples. The training set for this sub-task contains 3,876 samples

and the test set contains 213 samples (table 3.1).

A Train
OFF 20,620
NOT 4,163
All 24,783

Table 6.1: The distribution of samples by labels in the modified HSAOFL
dataset.

6.1.2 Danish

• Sub-task A - Offensive language identification. In sub-task A, we

use the full Danish training dataset in the training of all models.

The training set for this sub-task contains 2,879 samples and the

test set contains 721 samples (table 4.2).

• Sub-task B - Automatic categorization of offensive language

types. In sub-task B we use a subset of the Danish training dataset,

only including samples labeled as OFF in sub-task A (for the same

reasons as mentioned earlier). The training set for this sub-task

contains 352 samples and the test set contains 89 samples (table

4.2).

• Sub-task C - Offensive language target identification. In sub-task

C, we use a subset of the Danish training dataset, only including

Chapter 6. Experimental Setup 50

samples labeled as TIN in sub-task B (again for the same reasons

as mentioned earlier). The training set for this sub-task contains

205 samples and the test set contains 47 samples (table 4.2).

6.2 Model Training and Testing

The Logistic Regression classifier (section 5.2.4) is trained for 100 itera-

tions and the deep learning classifiers (Learned-BiLSTM, Fast-BiLSTM

and AUX-Fast-BiLSTM) are trained for 100 epochs. In the deep learning

classifiers we train each for 10 epochs at a time, with a batch size of

128. The epoch that provided the best result is then reported for each

classifier in Chapter 7.

6.3 Evaluation

In the evaluation of our models we make use of pre-defined test sets

for each sub-task within each language (Chapters 3 and 4). We use our

models to predict the category of the samples in these sets and calculate

some quality metrics from these predictions. The quality metrics used

are Recall, Precision, F1-score, and macro averaged F1-score. These are

the same metrics as were used in [42] and will therefore provide an easy

way to directly compare our results. The following section describes

these metrics in detail.

6.3.1 Quality Metrics

When working on classification tasks in general, the results will con-

tain a mix of true positives (Tp), true negatives (Tn), false positives (Fp)

Chapter 6. Experimental Setup 51

and false negatives (Fn). To try to evaluate the overall quality of the

solutions, the first step is usually to look at the Precision and Recall. Pre-

cision (p) is defined as the number of true positives over the sum of true

positives and false positives [2] (equation 6.1). This is the percentage of

the classified items that are relevant. Recall (r), on the other hand, is de-

fined as the number of true positives over the sum of true positives and

false negatives [2] (equation 6.2). This is the percentage of total relevant

results correctly classified.

p =
Tp

Tp + Fp
(6.1)

r =
Tp

Tp + Fn
(6.2)

Recall and precision are good metrics to look at, but they normally

come at the cost of one another. If all samples are classified as a single

class, that class will have perfect recall but low precision (and vice versa).

For this reason a more balanced metric is required. F1-score is defined

as the harmonic mean between precision and recall (equation 6.3), and

gives an idea of how close the two are.

F1-score =
2 · p · r
p + r

(6.3)

Since our task is of a multi-class nature, and the samples in our

datasets are highly imbalanced, we use a macro averaged F1-score as the

main evaluation metric for our classifiers This is the main metric used

in [42] (table 2.1) and will, therefore, give us an easy way to compare

our classifiers to the ones presented there. The macro averaged F1-score

Chapter 6. Experimental Setup 52

evaluates each class independently and then calculates the unweighted

average of the F1-scores [42]. Macro averaged F1-score provides some

benefits over simpler metrics such as accuracy. The main benefit be-

comes clear when the data is highly skewed. Classifying all items as

the most well represented class would result in good accuracy but low

macro averaged F1-scores.

Chapter 7

Results and Analysis

This chapter details the results from the experiments described in Chap-

ter 6. For each sub-task (A, B, and C, section 3.1) we present the results

for all methods in each language, evaluated by their macro averaged F1-

score. For the best performing system in each sub-task we also explore

the Recall, Precision, and F1-Score for each category.

7.1 Experiments

7.1.1 Sub-task A - Offensive language identification

English. In table 7.1, the results from our experiments for sub-task A

and the English language are presented. The best performing system

is the Fast-BiLSTM model (section 5.2.7), trained for 100 epochs, using

the OLID dataset. The model achieves a macro averaged F1-score of

0.735. Comparing these results to the results from the shared OffensEval

task (table 2.1) puts our results in the same range as the BiLSTM based

methods introduced there.

Chapter 7. Results and Analysis 54

A somewhat surprising result is that the additional training data

from the HSAOFL dataset [10] provides limited benefits and does

not consistently improve the results of our models. For the models

that solely make use of word embeddings (Learned-BiLSTM and Fast-

BiLSTM) the results are actually worse with the additional training

data. This is likely due to the fact that in these models we limit the

sequence length of the embeddings based features to 100. Given that the

datasets are vastly different and were collected at different times with

different objectives, this likely causes the feature sequences to vastly

differ, making it harder to detect notable patterns in the training data.

On the other hand, in the models that make use of a range of additional

features (Logistic Regression and AUX-Fast-BiLSTM), the additional

features are created using the full sequence length of samples. In this

case, the additional training data proves helpful, resulting in improved

macro F1-scores.

Model Train Set Macro F1
All NOT - 0.419

Logistic Regression OLID 0.724
Learned-BiLSTM (10 Epochs) OLID 0.707
Fast-BiLSTM (100 Epochs) OLID 0.735

AUX-Fast-BiLSTM (10 Epochs) OLID 0.692
Logistic Regression OLID + HSAOFL 0.728

Learned-BiLSTM (10 Epochs) OLID + HSAOFL 0.704
Fast-BiLSTM (100 Epochs) OLID + HSAOFL 0.688

AUX-Fast-BiLSTM (20 Epochs) OLID + HSAOFL 0.712

Table 7.1: Results from our experiments for sub-task A and English.

Danish. In table 7.2 the results from our experiments for sub-task A and

the Danish language are presented. The best performing system is the

Logistic Regression model (section 5.2.4), obtaining a macro averaged

Chapter 7. Results and Analysis 55

F1-score of 0.699. This is the second best performing model for English

while surprisingly the best performing model for English (Fast-BiLSTM)

performs worst for Danish.

The low scores for Danish compared to English can likely be ex-

plained by the low amount of data in the Danish dataset. The Danish

training set contains 2, 879 samples (table 4.2) while the English training

set contains 13, 240 samples (table 3.1). Futhermore, it is worth stating

that in the English dataset around 33% of the samples are labeled of-

fensive while in the Danish set this rate is only at around 12%. The

effect that this under represented class has on the Danish classification

task can be seen in more detail in table 7.3, where the recall, precision,

and F1-scores are presented by category for the best performing sys-

tems in both English and Danish. The differences in both recall and

precision by category for the Danish language are far higher than for

English, further indicating that the imbalance in the Danish set has a

significant effect on the results. The models that make use of additional

features (AUX-Fast-BiLSTM and Logistic Regression) perform better

than the other two in Danish, indicating that a larger feature space can

prove helpful for low resource languages and under represented classes.

Model Train Set Macro F1
All NOT - 0.467

Logistic Regression DA 0.699
Learned-BiLSTM (10 Epochs) DA 0.658

Fast-BiLSTM (100 Epochs) DA 0.630
AUX-Fast-BiLSTM (50 Epochs) DA 0.675

Table 7.2: Results from our experiments for sub-task A and Danish.

Chapter 7. Results and Analysis 56

Model R NOT R OFF P NOT P OFF F1 NOT F1 OFF
Fast BiLSTM EN 0.835 0.646 0.859 0.603 0.847 0.624

Logistic Regression DA 0.913 0.506 0.929 0.450 0.921 0.476

Table 7.3: Recall (R), precision (P), and F1 score by class for our best
performing models in sub-task A. Baselines also included to get an idea
of the class distribution.

7.1.2 Sub-task B - Automatic categorization of offensive language types

English. In table 7.4 the results are presented for sub-task B and the

English language. The Learned-BiLSTM model (section 5.2.6) trained

for 60 epochs performs the best, obtaining a macro F1-score of 0.619.

As seen in table 7.3, the recall and precision scores are significantly

lower for the UNT category than the TIN category. One reason for these

low scores is the fact that the training data used in this task is highly

skewed, with only around 14% of the posts labeled as UNT. We can

see that the pre-trained embedding model, Fast-BiLSTM, performs the

worst, with a macro averaged F1-score of 0.567. This clearly indicates

that this approach is not a good fit for detecting subtle differences

in offensive samples in highly skewed data, while the more complex

feature models seem to perform better.

Danish. Table 7.5 presents the results for sub-task B and the Danish

language. The best performing system is the AUX-Fast-BiLSTM model

(section 5.2.8) trained for 100 epochs, which obtains an impressive macro

F1-score of 0.729. This supports our theory that simple models that only

rely on pre-trained word embeddings are not the optimal approach for

this task.

As seen in table 7.6, the limiting factor seems to be the recall for

the UNT category, while the precision scores are in good sync. As

Chapter 7. Results and Analysis 57

mentioned in Chapter 2, the best performing system for sub-task B

in OffensEval was a rule based system, suggesting the fact that more

refined features, such as manually constructed lexicons, can further

improve the performance of models for this task. The better perfor-

mance of our models for Danish compared to English can most likely

be explained by the fact that the training set used for Danish is more

balanced, with around 42% of the posts labeled as UNT.

Model Train Set Macro F1
All TIN - 0.470

Logistic Regression OLID 0.593
Learned-BiLSTM (60 Epochs) OLID 0.619

Fast-BiLSTM (10 Epochs) OLID 0.567
AUX-Fast-BiLSTM (50 Epochs) OLID 0.595

Table 7.4: Results from our experiments for sub-task B and English.

Model Train Set Macro F1
All TIN - 0.346

Logistic Regression DA 0.594
Learned-BiLSTM (40 Epochs) DA 0.643

Fast-BiLSTM (100 Epochs) DA 0.681
AUX-Fast-BiLSTM (100 Epochs) DA 0.729

Table 7.5: Results from our experiments for sub-task B and Danish.

Model R UNT R TIN P UNT P TIN F1 UNT F1 TIN
Learned BiLSTM EN 0.370 0.892 0.303 0.918 0.333 0.905

AUX-Fast-BiLSTM DA 0.690 0.766 0.725 0.735 0.707 0.750

Table 7.6: Recall (R), precision (P), and F1 score by class for our best
performing models in sub-task B. Baselines also included to get an idea
of the class distribution.

Chapter 7. Results and Analysis 58

7.1.3 Sub-task C - Offensive language target identification

English. The results for sub-task C and the English language are pre-

sented in table 7.7. The best performing system is the Learned-BiLSTM

model (section 5.2.6) trained for 10 epochs, obtaining a macro averaged

F1-score of 0.557. This is an improvement over the models introduced in

[41], where the BiLSTM based model achieves a macro F1-score of 0.470

(table 2.1).

The main limitations of our model seems to be in the classification of

OTH samples, as seen in table 7.9, where both the recall and precision

are significantly lower for that category. This can, again, be explained

by the imbalance in the training data (table 3.1), where only around 10%

of the samples are labeled as OTH. It is, however, interesting to see that

this imbalance does not effect the GRP category as much, which only

constitutes about 28% of the training samples. A probable cause for the

differences in these, is the fact that the definitions of the OTH category

are vague, capturing all samples that do not belong to the previous two.

Danish. Table 7.8 presents the results for sub-task C and the Danish

language. The best performing system is the same as in English, the

Learned-BiLSTM model (section 5.2.6), trained for 100 epochs, obtaining

a macro averaged F1-score of 0.629. Given that this is the same model

as the one that performed the best for English, this further indicates

that task specific embeddings are helpful for more refined classification

tasks.

It is interesting to see that both of the models using the additional

set of features (Logistic Regression and AUX-Fast-BiLSTM) perform the

worst. This indicates that these additional features are not beneficial for

Chapter 7. Results and Analysis 59

this more refined sub-task in Danish. It is, however, worth mentioning

that the amount of samples used in training for this sub-task is very

low, consisting of only 205 samples (table 4.2). The imbalance in the

dataset does not seem to have as much effect in Danish as it does in

English, as can be seen in table 7.9. Only about 14% of the samples are

labeled as OTH in the training set (table 4.2), but both the recall and

precision scores are much closer than they are for English.

Model Train Set Macro F1
All IND - 0.213

Logistic Regression OLID 0.458
Learned-BiLSTM (10 Epochs) OLID 0.557

Fast-BiLSTM (50 Epochs) OLID 0.516
AUX-Fast-BiLSTM (40 Epochs) OLID 0.536

Table 7.7: Results from our experiments for sub-task C and English.

Model Train Set Macro F1
All GRP - 0.219

Logistic Regression DA 0.438
Learned-BiLSTM (100 Epochs) DA 0.629

Fast-BiLSTM (60 epochs) DA 0.579
AUX-Fast-BiLSTM (100 Epochs) DA 0.401

Table 7.8: Results from our experiments for sub-task C and Danish.

Model R IND R GRP R OTH P IND P GRP P OTH F1 IND F1 GRP F1 OTH
Learned-BiLSTM EN 0.670 0.667 0.343 0.770 0.634 0.273 0.717 0.650 0.304
Learned-BiLSTM DA 0.556 0.696 0.667 0.667 0.640 0.571 0.606 0.667 0.615

Table 7.9: Recall (R), precision (P), and F1 score by class for our best
performing models in sub-task C. Baselines also included to get an idea
of the class distribution.

Chapter 7. Results and Analysis 60

7.2 Analysis of Deep Learning Classifiers

We perform some analysis of our deep learning classifiers by training

the best performing systems and withholding 10% of the training sam-

ples to use as a validation set. The models are trained on the remaining

training set, following the same procedure as discussed in Chapter 6,

while the validation set is not used in the training of the models. After

each epoch the training and validation loss is calculated using the Bi-

nary Crossentropy loss function. The goal of this analysis is to determine

if the best performing deep learning models are over-fitting. In order to

determine this, we plot the training and validation loss curves over the

training epochs. If the curve of the validation loss starts to diverge from

the training loss curve it indicates over-fitting. Other than the change in

the training set sizes, the model parameters are the same as discussed

in section 5.2.

7.2.1 Sub-task A - Offensive language identification

In sub-task A the best performing model for the English language, ac-

cording to our experiments in section 7.1.1, is the Fast-BiLSTM classifier

(section 5.2.7). In figure 7.1 the train and validation loss are plotted over

the training epochs. The validation loss curve diverges from the train-

ing loss curve at around 40 epochs indicating that the model is indeed

over-fitting to some extent.

For the Danish language the best performing system, according to

our experiments in section 7.1.1, is the Logistic Regression classifier (sec-

tion 5.2.4). Given the fact that we cannot analyze the Logistic Regression

classifier in the same manner as the deep learning models it will not be

included in this section.

Chapter 7. Results and Analysis 61

Figure 7.1: The train and validation loss curve for the Fast-BiLSTM clas-
sifier for sub-task A and the English language.

7.2.2 Sub-task B - Automatic categorization of offensive language types

For sub-task B and the English language, the best performing system,

according to our experiments in section 7.1.2, is the Learned-BiLSTM

classifier (section 5.2.6). In figure 7.2 (a), the validation and training

loss curves are plotted. We can see that the model over-fits aggressively

after just 10 epochs, and the training loss approaches 0 as the number of

epochs increases. A possible reason for this aggressive over-fitting is the

fact that in the Learned-BiLSTM classifier, all parameters of the model

are updated during training, including the word-embeddings.

For the Danish language the best performing system, according to

our experiments in section 7.1.2, is the AUX-Fast-BiLSTM classifier (sec-

tion 5.2.8). In figure 7.2 (b) the training and validation loss curves are

plotted. There is not a clear indication of over-fitting, and interestingly,

the validation loss remains constantly lower than the training loss. A

possible explanation for this is the fact that the validation set is quite

small, only containing 35 samples.

The AUX-Fast-BiLSTM classifier should be more unlikely to over-fit

than the Learned-BiLSTM classifier, since the embedding layer is initial-

Chapter 7. Results and Analysis 62

ized with pre-trained FastText [24] embeddings (section 5.1.8) and these

word-embeddings are not updated during training.

Figure 7.2: The train and validation loss for the best performing models
in sub-task B for each language.

(a) Learned-BiLSTM - English (b) AUX-Fast-BiLSTM - Danish

7.2.3 Sub-task C - Offensive language target identification

In sub-task C the best performing system for both English and Danish,

according to our experiments in section 7.1.3, is the Learned-BiLSTM

classifier (section 5.2.6). Note, however, that for English, the classifier

is only trained for 10 epochs, while the classifier for Danish is trained

for 100 epochs. In figure 7.3 the training and validation loss curves are

plotted for each language. After 10 epochs for the English language, the

classifier does not show any signs of over-fitting.

We can, however, see that the classifier for the Danish language be-

haves similarly to the Learned-BiLSTM classifier for English and sub-

task B (section 7.2.2), where the validation loss diverges after only 20

epochs. The Learned-BiLSTM is, therefore, quite troublesome when it

comes to over-fitting. A possible solution might be to decrease the size

of the embedding layer, downgrading the number of parameters that

can be tuned during training.

Chapter 7. Results and Analysis 63

Figure 7.3: The train and validation loss for the best performing models
in sub-task C for each language.

(a) Learned-BiLSTM - English (b) Learned-BiLSTM - Danish

7.3 Error Analysis

We perform analysis of the misclassified samples in the evaluation of

our best performing models. To accomplish this, we compute the TF-

IDF scores for a range of n-grams (section 5.1.7). We then take the top

scoring n-grams in each category and try to discover any patterns that

might exist. We also perform some manual analysis of these misclassi-

fied samples. The goal of this process is to try to get a clear idea of the

areas our classifiers are lacking in. The following sections describe this

process for each of the sub-tasks.

7.3.1 Sub-task A - Offensive language identification

English. The classifier seems to struggle with identifying obfuscated of-

fensive terms. This includes words that are concatenated together, such

as barrrysoetorobullshit. The classifier also seems to associate she with

offensiveness, and samples containing she are misclassified as offensive

in several samples while he is more rarely associated with offensive lan-

guage.

Chapter 7. Results and Analysis 64

We discover several examples where our classifier classifies posts

containing profanity as offensive that are labeled as non-offensive in the

test set. Posts such as Are you fucking serious? and Fuck I cried in this scene

are labeled non-offensive in the test set, but according to the definitions

introduced in the annotation guidelines (Chapter 3) these posts should

indeed be classified as offensive, which raises some concerns about the

quality of the annotations in the test data.

Danish. For Danish, the best classifier seems to be inclined to classify

longer sequences as offensive. The mean character length of the samples

misclassified as offensive is 204.7, while the mean character length of the

samples misclassified as not offensive is 107.9. This can be explained by

the fact that sub-task A categorizes every post containing any form of

profanity as offensive, so more words increase the likelihood of some of

them being profanity.

The classifier also seems to suffer from the same limitations as the

classifier for English when it comes to obfuscated words, misclassify-

ing samples such as Hahhaaha lær det biiiiiaaaatch as non-offensive. It

also seems to associate the occurrence of the word svensken with offen-

sive language, and quite a few samples containing that word are mis-

classified as offensive. This can be explained by the fact that offensive

language towards Swedes is common in the training data, resulting in

this association. From this, we can conclude that the classifier relies too

much on the presence of individual keywords, and is lacking in inter-

preting the context of these keywords.

Chapter 7. Results and Analysis 65

7.3.2 Sub-task B - Automatic categorization of offensive language types

English. In sub-task B the obfuscation problem seems to prevail. Our

classifier misses clear indicators of targeted insults such as WalkAwayFro-

mAllDemocrats. It also seems to rely too highly on the presence of pro-

fanity, misclassifying samples containing terms such as bitch, fuck, shit,

etc. as targeted insults.

The issue of the data quality is also concerning in this sub-task, as

we discover samples containing clear targeted insults such as Hillary-

ForPrison being labeled as untargeted in the test set.

Danish. Our Danish classifier also seems to be missing obfuscated

words such as kidsarefuckingstupid in the classification of targeted in-

sults. It relies to some extent to heavily on the presence of profanity

such as pikfjæs, lorte and fucking, and misclassifies untargeted posts

containing these keywords as targeted insults.

7.3.3 Sub-task C - Offensive language target identification

For both English and Danish, misclassification based on obfuscated

terms as discussed in the previous sections seems to be an issue for sub-

task C as well. Given the fact that our classifiers mostly rely on word-

level information, the problem of obfuscated terms could be tackled by

introducing character level features such as character level n-grams.

Chapter 8

Conclusion

Offensive language on online social media platforms is becoming a ma-

jor liability for most of the major platforms. One of the more severe type

of offensive language is hate speech, and the presence of hate speech has

been shown to be in correlation with hate crimes in real life settings [25].

Due to the vast amount of user-generated content on online platforms,

automatic methods are required to detect this kind of harmful content.

Until now, most of the research on the topic has focused on solving the

problem for English. Due to this fact, we explore and develop automatic

detection systems to tackle the problem of offensive speech for both the

English and the Danish language.

8.1 Contribution

Danish dataset. We constructed and annotated a Danish dataset for the

task of offensive language detection (Chapter 4), shaped by the struc-

ture introduced in Chapter 3. To our knowledge, this is the first Danish

dataset developed for the task at hand. The dataset consists of 3600

Chapter 8. Conclusion 67

user-generated comments from the social media platforms Facebook

and Reddit.

Danish hate speech lexicon. We constructed a Danish hate speech

lexicon (section 4.2), and to our knowledge, this lexicon is the first of

its kind. The lexicon was constructed from survey data on the topic

posted on Reddit, targeted at native Danish speakers in the community.

The lexicon consists of 113 offensive and hateful terms in Danish, and

is presented in Appendix A.

Automatic detection systems. We successfully developed automatic

systems for offensive language identification, the categorization of of-

fensive language types and offensive language target identification fol-

lowing the task structure discussed in Chapter 3. We train our systems

to work with both the English and Danish language, and to our knowl-

edge, this is the first time a system of this kind has been developed

for Danish. In the task of offensive language identification (sub-task

A, section 3.1) our best performing system for the English language is

the Fast-BiLSTM classifier (section 5.2.7) which achieves a macro aver-

aged F1-score of 0.735. For Danish, the best performing system is the

Logistic Regression classifier (section 5.2.4) which achieves a macro av-

eraged F1-score of 0.699. In the categorization of offensive language

types (sub-task B, section 3.1) the best performing system for the En-

glish language achieves a macro averaged F1-score of 0.619 using the

Learned-BiLSTM classifier (section 5.2.6). For Danish, the best perform-

ing system uses the AUX-Fast-BiLSTM classifier (section 5.2.8), achiev-

ing a macro averaged F1-score of 0.729. Finally, in the offensive language

target identification (sub-task C, section 3.1) the best performing system

Chapter 8. Conclusion 68

is the Learned-BiLSTM classifier (section 5.2.6), which achieves a macro

averaged F1-score of 0.557 for English and 0.629 for Danish.

8.2 Future Work

During the time of our work we have been in contact with the authors of

[41] and [42]. Given the fact that our dataset is shaped after the guide-

lines proposed by [41], we will contribute our Danish dataset and our

Danish hate speech lexicon (Chapter 4) to a shared task on the topic, Of-

fensEval 2020, managed by the authors of [42]. The task will be multilin-

gual in nature, where the goal is to develop offensive language detection

systems following the structure introduced in Chapter 3 for multiple

languages (including English and Danish).

Appendix A

Danish Hate Speech Lexicon from Reddit

Survey

• bekvem
• bessefar
• bondejokke
• bondeknold
• bonderøv
• bondsk
• bæskubber
• bøssekarl
• establishment
• fisefornem
• fjeldabe
• fjæs
• floskelmager
• flæbe
• flødebolle
• frøæder
• gnom
• hadsprædikant
• hedenskab
• hjemmefødning
• kopist
• kraftidiot

Appendix A. Danish Hate Speech Lexicon from Reddit Survey 70

• krigsliderlig
• kvasiintellektuel
• kvindagtig
• lebbe
• lort
• ludder
• middelalderlig
• møgunge
• nigger
• offergøre
• offergørelse
• papmor
• partout
• perker
• pigebarn
• pigefnidder
• plapre
• plasticmor
• røvhul
• skaffedyr
• skrælling
• slipsedyr
• snerpe
• snotdum
• snotunge
• spastiker
• stikker
• støjbergsk
• svans
• symbolpolitik
• torsk
• tude
• tyskertøs
• vatpik
• Amatører
• bidesild
• bløddyr
• bollefjæs
• fedtefyre
• hundehoveder
• fnatmider

Appendix A. Danish Hate Speech Lexicon from Reddit Survey 71

• fæhoveder
• grødbønder
• hængerøve
• ignoranter
• jammerkommoder
• karklud
• klamhuggere
• klodsmajor
• lusepustere
• narrehatte
• pattebørn
• pjalt
• pjok
• pudseklud
• skidespræller
• skvadderhoveder
• skvat
• skvatpissere
• slapsvanse
• snotklatte
• elendige socialdemokrater
• Sindssyge
• kvindemenneske
• svabrefjams
• Hestepære
• kolort
• kolibriafføring
• myggefjols
• kældernisse
• buskerusker
• hårtygger
• våben
• ledningsfletter
• højreradikal
• højreekstremist
• fremmedfjendsk
• nynazist
• kartoffel
• ny bruger
• kvindehader
• hvid

Appendix A. Danish Hate Speech Lexicon from Reddit Survey 72

• privilegeret
• heteronormativ
• undertrykker
• krænker
• kristen
• muslimer
• multikultur
• nazist
• sort

Bibliography

[1] Eu council framework decision 2008/913/jha. https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al33178.

Accessed: 2019-05-29.

[2] Scikit learn - metrics. http://scikit-learn.org. Accessed: 2019-04-19.

[3] Straffeloven § 266 b. https://danskelove.dk/straffeloven/266b. Ac-

cessed: 2019-05-29.

[4] Stochastic Gradient Descent. https://scikit-

learn.org/stable/modules/sgd.html. Accessed: 2019-05-29.

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey

Irving, Michael Isard, et al. Tensorflow: A system for large-scale

machine learning. In 12th {USENIX} Symposium on Operating Sys-

tems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[6] Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, and Vasudeva

Varma. Deep learning for hate speech detection in tweets. In Pro-

ceedings of the 26th International Conference on World Wide Web Com-

panion, pages 759–760. International World Wide Web Conferences

Steering Committee, 2017.

Bibliography 74

[7] James Banks. Regulating hate speech online. International Review of

Law, Computers & Technology, 24(3):233–239, 2010.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-

parameter optimization. Journal of Machine Learning Research,

13(Feb):281–305, 2012.

[9] François Chollet et al. Keras. https://keras.io, 2015.

[10] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar We-

ber. Automated hate speech detection and the problem of offensive

language. In Eleventh International AAAI Conference on Web and So-

cial Media, 2017.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional transformers

for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[12] Jeffrey L Elman. Finding structure in time. Cognitive science,

14(2):179–211, 1990.

[13] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin,

and Tomas Mikolov. Learning word vectors for 157 languages. In

Proceedings of the International Conference on Language Resources and

Evaluation (LREC 2018), 2018.

[14] Trudy M Gregorie. Cyberstalking: Dangers on the information su-

perhighway. National Center for Victims of crime, 2001.

[15] Lieve Hamers et al. Similarity measures in scientometric research:

The jaccard index versus salton’s cosine formula. Information Pro-

cessing and Management, 25(3):315–18, 1989.

Bibliography 75

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-

ory. Neural computation, 9(8):1735–1780, 1997.

[17] Clayton J Hutto and Eric Gilbert. Vader: A parsimonious rule-

based model for sentiment analysis of social media text. In Eighth

international AAAI conference on weblogs and social media, 2014.

[18] Sarah Joseph and Melissa Castan. The international covenant on civil

and political rights: cases, materials, and commentary. Oxford Univer-

sity Press, 2013.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[20] Quoc Le and Tomas Mikolov. Distributed representations of sen-

tences and documents. In International conference on machine learn-

ing, pages 1188–1196, 2014.

[21] Dong C Liu and Jorge Nocedal. On the limited memory bfgs

method for large scale optimization. Mathematical programming,

45(1-3):503–528, 1989.

[22] Edward Loper and Steven Bird. Nltk: the natural language toolkit.

arXiv preprint cs/0205028, 2002.

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-

ficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781, 2013.

[24] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian

Puhrsch, and Armand Joulin. Advances in pre-training distributed

word representations. In Proceedings of the International Conference

on Language Resources and Evaluation (LREC 2018).

Bibliography 76

[25] Karsten Müller and Carlo Schwarz. Fanning the flames of hate:

Social media and hate crime. Available at SSRN 3082972, 2018.

[26] Finn Årup Nielsen. A new anew: Evaluation of a word list for

sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903,

2011.

[27] Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad,

and Yi Chang. Abusive language detection in online user content.

In Proceedings of the 25th international conference on world wide web,

pages 145–153. International World Wide Web Conferences Steering

Committee, 2016.

[28] Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar Mehdad,

and Yi Chang. Abusive language detection in online user content.

In Proceedings of the 25th international conference on world wide web,

pages 145–153. International World Wide Web Conferences Steering

Committee, 2016.

[29] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter

Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:

Machine learning in python. Journal of machine learning research,

12(Oct):2825–2830, 2011.

[30] Jeffrey Pennington, Richard Socher, and Christopher Manning.

Glove: Global vectors for word representation. In Proceedings of

the 2014 conference on empirical methods in natural language processing

(EMNLP), pages 1532–1543, 2014.

Bibliography 77

[31] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,

Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep con-

textualized word representations. arXiv preprint arXiv:1802.05365,

2018.

[32] Yuval Pinter, Robert Guthrie, and Jacob Eisenstein. Mim-

icking word embeddings using subword rnns. arXiv preprint

arXiv:1707.06961, 2017.

[33] Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual

part-of-speech tagging with bidirectional long short-term memory

models and auxiliary loss. arXiv preprint arXiv:1604.05529, 2016.

[34] Sean R Eddy. Hidden markov models. Current Opinion in Structural

Biology, 6:361–365, 06 1996.

[35] Herbert Robbins and Sutton Monro. A stochastic approximation

method. The annals of mathematical statistics, pages 400–407, 1951.

[36] Anna Schmidt and Michael Wiegand. A survey on hate speech

detection using natural language processing. In Proceedings of the

Fifth International Workshop on Natural Language Processing for Social

Media, pages 1–10, 2017.

[37] Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie Mennes, Bart

Desmet, Guy De Pauw, Walter Daelemans, and Véronique Hoste.

Detection and fine-grained classification of cyberbullying events.

In Proceedings of the international conference recent advances in natural

language processing, pages 672–680, 2015.

Bibliography 78

[38] Cynthia Van Hee, Ben Verhoeven, Els Lefever, Guy De Pauw,

Véronique Hoste, and Walter Daelemans. Guidelines for the fine-

grained analysis of cyberbullying. 2015.

[39] Zeerak Waseem, Thomas Davidson, Dana Warmsley, and Ingmar

Weber. Understanding abuse: A typology of abusive language de-

tection subtasks. arXiv preprint arXiv:1705.09899, 2017.

[40] Zeerak Waseem and Dirk Hovy. Hateful symbols or hateful people?

predictive features for hate speech detection on twitter. In Proceed-

ings of the NAACL student research workshop, pages 88–93, 2016.

[41] Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal,

Noura Farra, and Ritesh Kumar. Predicting the type and target

of offensive posts in social media. arXiv preprint arXiv:1902.09666,

2019.

[42] Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal,

Noura Farra, and Ritesh Kumar. Semeval-2019 task 6: Identifying

and categorizing offensive language in social media (offenseval).

arXiv preprint arXiv:1903.08983, 2019.

